Introduction
In the 21st century, information is created, digitized and stored at unprecedented rates. The access to high-dimensional large data sets – “Big Data” – has opened up new possibilities for business analytics and economic research. Massive datasets alone are, however, insufficient to answer fundamental questions within business and economics. Using the potential outcome framework, we explore various methods useful for causal inference in the Big Data era. We discuss the promise and pitfalls of large-scale experimentation and consider empirical applications relevant for business and policy analysis.